If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-18p+4=0
a = 3; b = -18; c = +4;
Δ = b2-4ac
Δ = -182-4·3·4
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{69}}{2*3}=\frac{18-2\sqrt{69}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{69}}{2*3}=\frac{18+2\sqrt{69}}{6} $
| y=-2/3*6+3/4 | | 2/5x+1=3/4 | | (7x-2)^2-36=0 | | 3n/7-n/3=4 | | 1=x+0.9x+0.72x | | 2(4s+3)=86 | | 2x+4(1-x)=-2x+4 | | (v+3)=11 | | (u=3)*7=49 | | 3×(x-2)^2-75=0 | | 3-3r=-9 | | x-√(6x)+5=0 | | 2x+9*2=34 | | 2x+9*2=23 | | n/7=25 | | x-103=6 | | 17-3n=47 | | 8x-9=36 | | 2(x+8)-5=1 | | 6y^2-3y-5=0 | | 8c=80;c= | | -6-7y=22 | | x^2-6x+25=0.01 | | 6^3x+4=5 | | H=-16t^2+12t+1100 | | 90+(3x+26)+(2x+29)=180 | | h/9-3=29 | | 26x=x+4 | | 31x^2-150^2=0 | | -230.4=k(1024) | | -2=-3+11x | | (x+9)+(7x-5)+(3x)=180 |